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Mean flow generation by topographic Rossby waves 
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(Received 1 May 1978) 

This paper makes use of the ease of modelling topographic Rossby waves in a laboratory 
context to investigate the ability of these waves to generate strong zonal mean flows 
when the geostrophic (f / H )  contours are closed. A zonally travelling wave is forced 
in a narrow latitude band of a ‘polar beta plane’. Stronger signals occur when the 
motion of the driving is retrograde and a t  the phase speed of the gravest free modes. 
An important zonal westward mean flow occurs in the free interior while a compen- 
eating eastward jet is found a t  forced latitudes. The dependence of the mean flow 
strength upon the wave steepness indicates that genuine rectification processes are 
indeed taking place when the fluid is stirred by purely oscillating devices. 

This general tendency for topographic Rossby waves to transfer energy to zonal 
components is first analysed theoretically by investigating a side-band instability 
mechanism within an unforced fluid. Among the products of the interactions between 
a primary wave of wavenumber k and its side bands of wavenumber k Sk, the zonal 
flow is prominent. Wave steepnesses of order (ISkl/l kl)* only are required for zonal 
energy to grow whereas non-zonal components of scale longer or shorter than the 
primary wave need huge steepnesses [of order (1Skl/)kl-f] for amplification. This 
supplements the earlier notion that ‘nearly zonal’ waves may be generated by weak 
resonant interaction. 

For gentle driving certain classical aspects of Rossby wave propagation can be 
checked against the experiments. The linear theory provides also a convenient frame- 
work to discuss the meridional structure of the wave-induced Reynolds stress. For 
more energetic driving, a test of the potential vorticity mixing theory can be carried 
out and sheds further light upon the rectification mechanisms. 

1. Introduction 
It is of utmost interest in the atmosphere and in the ocean to be able to distinguish 

between externally forced mean flows and those driven by the mesoscale turbulence 
in which they are embedded. The early wind-driven theory of the oceanic general 
circulation of Stommel (1948) provided a picture of the first class of flows. The dis- 
covery of a very energetic oceanic weather obscuring this general circulation has 
prompted the study of eddy-driven mean flows to understand their role in global 
ocean dynamics. 

The subject has a long atmospheric history: a few decades ago, meteorologists were 
faced with the problem of explaining the energy and momentum transfer between the 
Burface mid-latitude westerlies and the large-scale perturbations therefrom. The 
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concept of negative viscosity was then introduced by Starr (1968) to describe the 
possible transfers from the turbulence to the mean flow. 

Rossby wave properties were invoked in an oceanic context by Thompson (1971) to 
explain the systematically negative Reynolds stresses GE of long period motions at a 
site due north of the Gulf Stream. The latter was suggested as a likely energy source 
for the relevant dispersion relation associates a northward group velocity with negative 
stresses. In  the meantime the modelling of unsteady planetary flows in the laboratory 
has already reached an advanced stage with studies by Phillips & Ibbetson (1967) and 
Beardsley (1969, 1975) among others, these studies having focused on realizations 
of flows governed by linear theory or small deviations therefrom. Whitehead (1975) 
was the first to show experimentally that zonal jets could be produced on a beta 
plane stirred by energetic oscillatory processes. 

The plan of this paper is as follows. Experimental techniques are presented in $2. 
Section 3 is an account of the salient features of the laboratory runs. They demonstrate 
readily that finite amplitude topographic Rossby waves are capable of producing 
significant mean currents along geostrophic contours. Intensive measurements of the 
flow are made to quantify various features of the interaction. Theoretical approaches 
to the mean flow generation processes are then investigated in $ 4. The interaction of 
discrete planetary waves on an unforced infinite beta plane is extended to the situation 
which prevails when conditions for the existence of weakly resonant triads are not 
met. The interaction of a finite amplitude primary wave with some residual side-band 
noise is then seen to force zonal flows by an amplitude selection mechanism on a 
time scale short compared with the modulation period of the zonal flow. This linear 
stability analysis is particularly relevant to the transient evolution of free turbulence 
on a beta plane. For closer connexion with the experiments involving forced flows 
with dissipation, both the wave radiation approach and the potential vorticity 
mixing theory are used in complementary ways a t  various amplitude levels and 
tested quantitatively in $5. This last part contains also an account of the decay of 
the waves in the presence of their self-induced mean flows when the wave driving is 
impulsively turned off. 

2. Description of the experiments 
The idea of the experiment originated from Dr A. McEwan, who must also be 

credited with the various designs of the components needed for this study, The wave 
tank is a plastic cylinder 62 cm in diameter and 30 cm in height. The axis of the 
cylinder coincides with the axis of the rotating table itself parallel to the local gravity 
vector within 4 s of arc. The topography needed to simulate the beta effect is intro- 
duced by allowing the free surface to adjust as a paraboloid under the rotational 
constraint. The geostrophic f / H  contours are thus circular with the equivalent beta 
increasing linearly from the centre to the outer wall. Earlier workers modelling planet- 
ary flows have used a wide variety of forcing mechanisms. To generate relative 
vorticity efficiently, the use of a distribution of sources and sinks at the bottom of 
the tank appears to be most satisfactory. It has also the added advantage of modelling 
rather well the forcing mechanisms of large-scale geophysical flows. In  the present 
work, a zonally travelling wave of mode number 12 is forced in a narrow annular 
region close to the outer wall, by a periodic distribution of sources and sinks. A total 
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FIGURE 1. Overall view of the experimental set-up. 

number of 72 sources and 72 sinks are arranged around the tank as in figure 1. In the 
present arrangement, the sources and sinks cannot exchange roles as they may only 
be switched on or off. A wavelength of the forcing pattern therefore consists of six 
sources and six sinks, only three of each being turned on a t  any given time. The mani- 
fold which is used to make the pattern periodic and zonally propagating is the genuine 
fluid commutator shown in figure 2 (a). A sealed plastic pipe is divided into two inde- 
pendent source and sink sections. On the inside it is fitted with a rotating shaft which 
enables one to open and close the holes drilled a t  the periphery of the pipe as it rotates. 
A centrifugal pump is connected between the two sections. Therefore fluid entering 
the manifold from the pump is expelled through the peripheral holes to the sources 
at the bottom of the tank by thin plastic tubes of equal length. The return path starts 
from the bottom sinks, enters the forcing manifold through the sink section and 
continues outwards to the pump. Figure 1 illustrates this point for a sample source 
and sink. It remains to understand how the manifold can make the forcing pattern 
propagate zonally. Figure 2 (b)  explains schematically the phase relationship which 
exists between bottom sources and sinks and the position of the connecting tubes 
around the fluid commutator. Two forcing wavelengths are illustrated. It is clear that 
if, for instance, the shaft rotates clockwise the pattern will propagate anticlockwise, 
half a turn of the shaft corresponding to a full period of the forcing pattern. The 
shaft rotation is produced by a high torque, low r.p.m. electric motor. Thus both the 
amplitude and the phase speed of the forced wave can be adjusted by varying the 
pump flow rate and the shaft rotation rate respectively. Sources and sinks are covered 
by a 2 cm thick layer of foam rubber to avoid jetting effects at the mouth of the tubes. 
Away from this area (8 cm wide), the bottom is covered by a flat metallic plate as can 
be seen in figure 1. 
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FIGURE 2. (a) The forcing manifold: a hydraulic commutator. (6)  Diagram showing the phase 
relationship between bottom sources end sinke and corresponding positions on the manifold. 
m, source off; 0, source on ; , sink on ; 0, sink off. 

The measurements were made in two ways: optically, by taking photographs and 
films of small (0.5 mm), almost neutrally buoyant polystyrene beads distributed on 
the free surface; electrically, by sensing the small fluctuations of the free-surface 
elevation with two capacitance probes one situated within the forced region, the 
other in the free interior. These two methods are complementary since the former 
provides spatial information while the latter allows a look at the temporal variability. 

Choice of the experimental parameters is somewhat restricted if one wants to look 
a t  quasigeostrophic motions with Ekman frictiorm kept at  a minimum. Quasigeo- 
strophy requires that the fractional depth change be small on the scale of the low 
frequency motions. This turns out to be a condition of small Froude number 

Fr = Q2L2/gH 

for our particular topography, which is 

H = H,, + +Q2r2, 

SZ being the rotation rate, L the scale of the motion, g the acceleration due to gravity 
and H the depth. A conflicting situation is met if one attempts to increase the reso- 
nance of the Rossby modes. Since viscous effects are essentially controlled by Ekman 
dynamics, the non-dimensional number governing the degree of inviscidness of the 
waves is the ratio of the wave period to the Ekman spin-up time. Since this ratio is 
depth independent and varies with rotation as Q - f ,  higher rotation rates must be 
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FIGURE 4. The zonally averaged fields as a function of radial distance in the statistically steady 
state. (a) Westward mean flow and Reynolds stress. (b) Eddy and mean kinetic energy. In this 
run the laboratory parameter values are as in figure 6 (plate 2). 

used to keep it small. Clearly a compromise must be reached to keep the Froude 
number small too. 

The forcing frequencies are within the frequency range of the gravest Rossby modes. 
The amplitudes of the motions are such that the Rossby number UIQL is small 
(low2) while the wave steepnesses U / c  are arbitrary (c being the phase speed of the 
waves and U a measured r.m.s. particle velocity). The main results will now be pre- 
sented while more specific measurements will be mentioned a t  the appropriate 
sections. 
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FIGURE 5. The mean flow strength us. the meridional kinetic energy for several runs carried out 
at various forcing amplitude levels. The solid curve obeys the relationship 0 = 4*03(v")M4. 

3. Experimental procedures and results 
Typical experiments are run as follows: when a state of rest is obtained in the rotat- 

ing frame, the oscillatory forcing is impulsively turned on. To excite Rossby waves 
efficiently, the forcing pattern is moved in a retrograde sense. Figure 3(a) (plate 1) 
reveals the transient flows as wave energy moves inwards. The strong southeast- 
northwest tilt of the eddies should be noticed. Within a few spin-up times, the flow 
evolves towards a statistically steady state depicted in figure 3 ( b )  (plate 1). Since the 
wave steepness is large in this run, a powerful retrograde mean flow (in either a 
zonally or a time-averaged sense) develops in the interior while a prograde jet swings 
along the outer wall in the forced area. The details of the latter are unfortunately hard 
to detect owing to lighting deficiencies. At any rate the meridional distribution of 
the jets is reminiscent of the zonal deformation of radial dye lines as observed by 
Whitehead (1976). Furthermore one Can see that the strength of the cyclonic vortices 
clearly exceeds that of the anticyclonic ones over the forced area. 

Velocity measurements have been carried out in this statistically steady state to 
obtain the north-south profile of Eulerian statistics. Current speeds were measured 
from streak photographs at 20 equally spaced points around a given latitude circle. 
Mean velocities and Reynolds-stress tensor were then computed for about ten 
latitudes, the sampling distance between latitudes being 2-5 cm. 

Figure 4 (a )  shows the zonal average of the westward flow and the Reynolds stress 
as a function of radial distance, while figure 4 ( b )  depicts the behaviour of the mean 
and eddy kinetic energy. The gross meridional distribution of the Reynolds stress is 
what is needed to balance the viscous losses of the westward mean flow in the interior. 
The eddy kinetic energy peaks at  the forcing and then decays slowly towards the 
interior. On the other hand the mean kinetic energy peaks somewhat away from the 
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FIGURE 7. Temporal decay of mean and eddy kinetic energy. The quantities plotted are SpatiCml 
averages of the kinetic energies over the basin. A, total kinetic energy; 0,  mean kinetic energy; 
I, eddy kinetic energy. 

forcing. This already indicates the main ingredients needed to maintain a retrograde 
flow, namely some eddy kinetic energy away from a directly forced region. 

In several runs the amplitude of the forcing was varied, everything else being kept 
the same. The mean circulation and the meridional eddy kinetic energy were measured 
at a given latitude R = 23 em. The results are plotted on figure 5. As expected, the 
mean 0 is a growing function of for these runs but the interesting point is that 0 
scales on a velocity somewhere between 7 2  and (p)$, the best fit being indicated by 
the curve which satisfies the following power law: 

= 4.93(v'2)044. 

This has important consequences which will be considered in detail in $5, but this 
reinforces our conviction that we are witnessing the generation of genuine eddy- 
driven mean flows. 

This general presentation would not be complete without mention of the period 
of decay from the statistically steady state. Figure 6 (plate 2) depicts the evolution 
towards a state of rest. One cannot help being struck by the unequal disappearance 
of mean and fluctuating kinetic energy. The use of the pressure probes also revealed 
a wave damping occurring at  a rate much smaller than the Ekman time scale. To test 
the idea further, spatial averaging of both mean and fluctuating kinetic energy was 
achieved as a function of decay time. Velocities were measured at ten equally spaced 
points around concentric latitude circles and this was done for 11 latitudes. This 
represents a data base of 110 values which spatial statistics can be constructed upon. 
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The results shown on figure 7 reveal the slow (fast) decay of the mean (eddy) kinetic 
energy on the Ekman time scale. On the other hand the total kinetic energy decays 
with the appropriate viscous time scales. 

These experiments as well as others suggest that barotropic Rossby waves tend to 
release their energy preferentially to zonal Fourier components. The next section 
presents a theory dealing with the instability of a primary wave in the presence of 
seed energy in adjacent side bands. 

4. Generation of zonal flows by Rossby wave side-band instabilities 
The subject of zonal flow generation by interacting Rossby waves has a long 

history in view of its potential significance for atmospheric motions of planetary scale. 
Longuet-Higgins & Gill (1967) applied the newly developed weak resonant inter- 

action theory and showed that discrete waves were unable to feed energy into a mean 
zonal flow. Later Newel1 (1969) and more recently Loesch (1977) used Rossby wave 
packets rather than infinite plane waves and found that on an infinite beta plane the 
resonant theory could lead to a transfer of energy to a zonal flow but in a character- 
istic time much longer than that of the triad interaction, revealing the weaknesses 
of the mechanism. Both Loesch (1977) and Plumb (1977) found that, in a zonal channel 
geometry, Rossby waves are unstable to second-order resonant interactions, the end 
result being that zonal waves are generated faster on the time scale of the triad inter- 
action itself. However these results do not cover the turbulent stages of the present 
controlled laboratory experiments and others with higher levels of nonlinearity. In  a 
numerical context, Rhines’s (1975) calculations may be recalled. Filling initially his 
periodic ocean with small-scale nonlinear eddies, he let the flow evolve freely according 
to the beta-plane equations. The familiar energy cascade to the large-scale motions 
occurs but slows down when the wave steepness becomes of order unity. At the same 
time the flow has become highly anisotropic with eddies elongated along latitude 
lines, suggesting that a transfer to zonal components is occurring. Rhines rationalized 
this zonal anisotropy phenomenologically by noticing that, in the later stages of the 
runs, weak resonant interaction theory applies as the wave steepness becomes small 
compared with unity. It predicts that in a wave triad energy will flow into the com- 
ponents of smallest frequency. In  conjunction with the notion that kinetic energy 
still leaks to the larger scales of motion, this favours elongation of eddies along lati- 
tude lines according to the dispersion relation. The same conclusion also emerges 
from Plumb’s ( 1977) analytical calculations. However the zonal anisotropy occurs 
readily in the initial turbulent stages and the following development aims at providing 
some clues to that behaviour. 

The resonant theory used by the above authors describes interactions between free 
waves (i.e. waves satisfying the dispersion relation) and the wave steepness must be 
very small to offset the forced interactions. However, as nonlinearity increases, 
nothing guarantees that the rules governing the free and forced interactions will be 
the same. Moreover, it appears to be very difficult to use the resonant theory to look 
a t  the generation of zonal flows with some spatial structure because a small wave 
steepness (ratio of wave period to interaction time) and an infinite period are clearly 
irreconciliable. 

In  the present section we shall therefore study the ‘strong’ interactions of a very 
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limited number of Fourier components. Because of obvious mathematical limitations, 
one cannot provide a long term description of the interactions as in the resonant 
theory but only the ‘small time behaviour ’. Hence this is a linear stability calculation. 
It would not be wise to go beyond that any way within a triad configuration of Fourier 
components because we know that the spectral breadth of the flow will increase 
greatly in time at these levels of nonlinearity. In  a sense the present analysis was 
triggered by Benjamin & Feir’s (1967) study of the disintegration of wave trains on 
deep water, which involved consideration of off-resonance interactions. 

For later comparison with the present laboratory experiments the chosen wave 
trio is composed specifically of a primary wave, its side band and the product of the 
interaction. The two important parameters guiding the discussion are the wave 
steepness 

S = uJkl2//9 

(where U is a r.m.s. velocity and k the wavenumber) and a small parameter 

k. = ISkl/lkl 
describing the modulation of the primary wave of wavenumber k by its side band of 
wavenumber k -C 6k. The main difference of approach between the following derivation 
and those of Loesch and Plumb is that no a priori ordering of the parameters S and p 
has been imposed, S being yet unspecified. Rather the outcome of the analysis will 
provide ranges of S as a function of p consistent with various generations of waves 
longer and shorter than the primary unstable wave. The forced triad interaction 
equations are now derived. The conservation of potential vorticity yields the classical 
Rossby wave equation: 

V2$t +P$a! = - J(9, V2$), (1)  

where II/ is the stream function and J denotes the Jacobian. Solutions of (1) are sought 
in the triad form 

where 8, = kj.x-wjt. 

Moreover the conditions A_, = AT and 8-, = -8, are imposed to ensure that $ is 
real. 

Substituting (2) into ( 1 )  and identifying Fourier coefficients on both sides such that 
0, + 0, + 8, = 0 yields 

I k n  I dA,/dt = ki x &( I ki I - I k, I A, A m  + iA ,(Pk, . I + W ,  I k, 1 9 (3) 

where ( I ,  m, n )  = & ( 1 , 2 , 3 )  and two other sets obtained by permutation. I is a eastward 
unit vector. The set (3) is now used to investigate first the stability of a triad which 
includes components of scale larger than the primary wave. Specifically the trio 
consists of a primary free wave (k, w ,  A )  which satisfies the dispersion relation, its 
side band ( - (k + 6k), - (w + 6w) ,  As),  and the product (Sk, 6w, A p ) .  Moreover the dis- 
persion relation shows that to O(p2) 

6~ = 6k. eu, 
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where c, = V,w is the group velocity. With this choice, the set of equations (3) becomes 
to O ( p )  

dA/dt = - (k x Sk) A,A,, dA,/dt = (k x Sk) AA,, 1 
Sk.1 

dA,/dt = 2(k x 6k) - k*Sk A,A + i A ,  (p  -+6k.c,) . I  PI2 I6kl2 

(4) 

The system (4) is now linearized around a basic state where the amplitude of the 
primary wave A is much greater than A ,  and A,. The equations governing the initial 
tendencies of the turbulent interactions are: 

A = A o ,  -- dAs - k x GkA,A,, 
dt 

3 = 2(kxSk)- 
k.Sk 

A,A, + iQ, A,, 
at I Skl 

where Q,, = p6k.I/16k12+6k.c,. 

Looking for solutions A,, A,  varying like eiwt yields the characteristic equation of the 
linear system ( 5 )  : 

~ 2 -  wfi, + 2Aglk x 6kI2 k.Sk/16kl2 = 0. 

Hence imaginary roots and therefore instability will occur if the following condition 
is satisfied : 

The first requirement is that k.Sk be positive. This means simply that the side 
band must be of a scale shorter than the primary wave for energy to be exchanged 
with the long wave of scale 6k. Assuming that this is so, one then realizes that the 
right-hand side of (6 )  is of order 18kI2 or ISkl-2 according to whether the long wave is 
zonal or not. If it is not zonal, then (6) can be simplified to 

S2 > C,u4 where S = A,lklS//3 (7) 

and G is a purely geometrical factor given by 

G = 4 cos2 O/sin2 a 1 cos a 1, 
a being the angle (k, 6k) and O the angle between Ox and 6k. 

The condition (7) is thus a severe one to satisfy since it requires a very large wave 
steepness of order ,xu-*. On the other hand, if the product of the interaction is a zonal 
wave, (6) becomes 

where $ is the angle between Ox and k. 
Hence only a small wave steepness of order ,ut is needed to generate a zonal flow. 

To be complete it is necessary to check the behaviour of triads, including waves of 
scales shorter than the primary component. Exactly the same kind of calculation 
(not reproduced here) can be applied to the group generating harmonics, namely 
- (w,  k), - (w + Sw, k + 6k) and (2w + 6w, 2k + ak); the results follow. 

For energy to be exchanged within this trio, a first necessary condition is that the 

s2 > 4,u Isin$), (8) 
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FIGURE 8. The non-dimensional growth rate aa a function of the wavenumber 
orientation of the primary wave for several values of S a / p .  

side-band wave must have a scale longer than the primary wave, consistent with 
earlier results: namely two initially small Fourier components may grow at the 
expense of a third, large amplitude wave if they have scale respectively shorter and 
longer than the latter. If so then the necessary and sufficient condition for instability, 
equivalent fo (7) and (8), is 

B2 > F P - ~ ,  (9) 

where F = cos2 #/lcos a1 sinza, in which the angles have the same meaning as before. 
Again very large nonlinearity is required for instability. Therefore we may con- 

clude that, when some side-band noise is superposed on a large amplitude Rossby 
wave, the nonlinear interactions will force a priori a zonal flow at the expense of 
shorter-scale harmonics or longer-scale flow with non-zero meridional components. 
It is interesting to go back and discuss further the implications of this mechanism for 
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efficient zonal flow generation. I n  particular the growth rate y can be computed 
when (8) is satisfied and one finds that 

Y = Plkl- 1 P #sin+$ Icos$I (282-p Isin$I)+. ( 10) 

When S2/p is much larger than unity, the ratio of the growth rate to the frequency 
of the fundamental varies as Spa, a value which may be significantly larger than 
unity, demonstrating the strength of the interaction. The orientation of the primary 
wave is also important. The non-dimensional growth rate has been plotted on figure 
8 as a function of $ (the angle of the wavenumber k with the Ox axis) for various values 
of S2/p. For small values of S2/p, zonal wavenumbers (meridional crests) are favoured 
but the associated growth rates are small. For values of S2/p much larger than unity, 
the maximum growth rate occurs when the angle the wavenumber vector makes with 
Ox is 35" 2'. 

It must be stressed again that the zonal flow is a forced component of low frequency 
unt = 6k. c,. It is interesting to compare y and om as can be done using (10) : 

y / w ,  = 4(252/p Isin$/ - I)+. 

The magnitude of this ratio is large when 5 2  exceeds p, this being also favoured by a 
more meridional orientation of the wave crests. Thus in this limit the strength of the 
zonal flow builds up quickly before i t  has completed a single slow oscillation. It is 
really in this sense that this mechanism can be recognized as an  efficient but 
transient way to build up a mean zonal flow. 

The main difference of approach of the present calculation from those using weak 
resonant interaction theory is that we have not imposed a priori that  the wave steep- 
ness be small. Rather we have shown that, by increasing gradually the wave steepness 
of a slowly modulated primary plane wave, a zonal flow will be forced a t  first (when 
S becomes larger than pt, and on a sufficiently short time scale to make the mechanism 
a realistic one. Of course we must stress again that the forced zonal flow does not have 
zero frequency but rather is modulated on a long time scale. It is, however, quasi- 
steady because the time scale of growth is so much shorter than the modulation time 
scale as soon as S exceeds p+), itself small compared with unity. As in any stability 
analysis, the calculation shown here indicates only the initial tendency of the behaviour 
of a turbulent triad and not the complete temporal evolution provided by weak reso- 
nant theory. Here the mechanism favouring the zonal flow is one of amplitude selec- 
tion among forced components. This contrasts greatly with weak resonant theory, 
which favours reversible energy transfer among triads of free waves obeying a 'phase' 
relationship. In  that theory the forced interactions that we have considered here are 
much smaller than the free interactions because of the small wave steepness hypo- 
thesis (Longuet-Higgins & Gill 1967)t.  Of immediate concern should be the extension 
of the present theory to the continuous case, in which the evolution of a narrowly 
peaked spectrum of turbulence would be looked at. I n  particular one would like to 
see how the growth rate for the zonal flow would depend upon the height and width 
of the initial spectrum. 

t See note added in proof on p. 64. 
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FIGURE 9. Pressure time series when: (a) the driving moves westward (retrograde); (a) the 
driving moves eastward (prograde) ; (c) the driving is stationary. 

5. Experimental signature of the dynamics 
This section provides several links between specific measurements of the flow and 

theoretical predictions based upon quasigeostrophic theory. It has been shown by 
Colin de Verdibre (1977) that, when the Rossby and Ekman numbers, the forcing 
vertical velocity and frequency are all at most of the order of the topographic slope 
(itself smaller than unity), a consistent perturbation expansion of the fields in powers 
of that slope leads at  zeroth order to geostrophy and at first order to the following 
potential vorticity equation, valid for a fluid with a free surface: 

where $ is the stream function, v the kinematic viscosity, H the mean depth ant1 
the vertical velocity imposed at the bottom. Also, E = v/QH2 is the Ekman i t  I I I I I l m ,  
R = QE* is the inverse of the Ekman spin-up time and h = (gH)*/ f  is the itsti i t i < t I  

Rossby radius of deformation. In the following subsections, various approximatioiI 
of (11) will be used to extract simple dynamical statements which may be checked 
experimentally. 

With closed geostrophic contours provided by the paraboloidal shape of the free surface, 
the first effect to check concerned the selective amplification of the waves when the 
driving of the zonally travelling wave moved either eastward or westward. The 
difference was indeed striking. The well-ordered steady waves found in the retrograde 
case (figures 3 and 6) were replaced by quite an unsteady messy pattern when the 
forcing moved in a prograde sense, showing that the fluid did not respond favourably 

5.1. Wave resmnce  and wave stresses 
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FIGURE 10. Locus of wavenumbers which may be excited under the action of a westward- 
travelling disturbance. Arrows represent the group velocity relative to the forcing. 

to such excitation. To give a quantitative estimate of the difference, pressure time 
series from two capacitance probes in the near and far field were obtained and are 
shown on figure 9. With a wave steepness of order unity, the enhancement of the 
signal for the retrograde case demonstrates quite clearly the necessity for the direction 
of propagation of the forcing to match the direction of the Rossby wave phase speed 
in order that significant motions be produced. For smaller forcing amplitudes the 
signal corresponding to the prograde case looked exceedingly small. Another simple 
aspect of linear theory which could be investigated easily concerns the orientation of 
the wave crests away from the directly forced region. Lighthill (1967) demonstrates 
that travelling forcing effects generate waves whose crests are stationary relative ta 
the forcing. They will be found in the direction of the group velocity (relative to the 
forcing) with wavenumbers satisfying (within the classical /3-plane equations) 

- Bk/( k2 + 12) = - k U ,  u>o,  
k and I being the zonal and meridional wavenumber respectively. Thus the possible 
wavenumbers may lie on the I axis and on a circle of radius (/3/U)* centred at the 
origin. The former family, with zero zonal wavenumber, will not be excited because 
our forcing spectrum has no energy there. On the other hand, wavenumbers lying on 
the circle will be actively generated. In figure 10 this locus has been plotted VS. the 
direction of the group velocity. Since in our experiments the forcing is bounded to  
the south by a rigid wall, the northern interior will be filled by waves with wave- 
numbers lying in the first and third quadrant of figure 10 exclusively. This indicates in 
turn a northwest-southeast orientation of the wave crests. Long exposure photographs 
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over one forcing period were taken a t  a very small amplitude level (steepness = 0.2) 
SO that particle paths were essentially closed. Figure 1 I (plate 3) reveals the elliptical 
orbits with orientation deduced from the theory. One may also see that the size of the 
loops decreases northwards because of the usual energy decay away from a source. 
These two effects, orientation and varying size of the orbits, are the necessary ingre- 
dients to produce positive divergence of the wave-induced Reynolds stresses. The 
meridional distribution of u'v' in figure 4(a) displays the same information but for 
more energetic driving. As can be observed in figure 11 some particles closer to the 
forcing are already trapped by this rectified westward circulation. 

There is a second type of resonance concerned with whether or not the waves feel 
the presence of the boundaries. Although the high mode structure chosen has a scale 
smaller than the dimensions of the basin it is to be expected that minimizing fric- 
tional effects, as explained earlier, will enable wave resonance to show up, allowing 
the experimental determination of the frequencies of the inviscid Rossby modes. In  
a cylindrical geometry with a free-surface height varying like Q2r2/2g, the linearized 
version of (1  1)  becomes 

- 

where time has been non-dimensionalized by the Coriolis parameter and 8 = R / f .  
This is to be solved with the auxilliary boundary condition that $ = 0 a t  r = a. In 
(12), lateral friction has been omitted. The present analysis is not concerned with 
the role of the Stewartson layers required to bring the velocity to zero at  a solid 
wall. Simple scale analysis shows that away from those boundary layers Ekman 
friction will exceed lateral friction if, as in the present experiment, the scale of the 
wave is greater than HE$. 

The inviscid free normal modes of the vorticity equation (12) are: 

$nm = Jn(qmr/a) ~ X P  [i(wt + no)] 

where J, is the nth-order Bessel function of the first kind and vrn its mth zero. The 
corresponding dispersion relation is 

w, = n/4[1+ (vmh/a)2]. 

As usual it associates large frequencies with large meridional scales (small vm). The 
radial equation derived from (12) has a turning point, thus the radial envelope of the 
normal mode Jn changes its nature according as its argument is smaller or larger than 
n. Thus when r is greater than r, = an/yrn, the Bessel function has an oscillatory 
character, while for smaller values of r it  decays algebraically to zero. This corres- 
ponds physically to the fact that it  is impossible for a wave packet starting from the 
outer wall to reach the centre. As it moves into shallower water, with p decreasing 
linearly, its meridional scale must increase. This augments and bends the group 
velocity eastwards until the packet is essentially reflected at  a critical latitude, 
limiting thereby further meridional penetration of energy. 

To compare experimental resonance with theory, the following forcing function 
was chosen: 
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FIQURE 12. The resonance curves: - , theory; a, experimental values. (a) The near field; 
R = 24cm, (a) The far field; R = 12cm; 7 represents the measured crest-to-trough wave 
amplitude in cm. 

The radial part is idealized by a Dirac 6 function rather than a more distributed 
function as in the experiments. The travelling wave is assumed to be harmonic in 
time although a square wave was forced in the experiments. These two idealizations 
have some important consequences when dealing with waves of finite steepness. 
The steadily forced solution is found by expanding the forcing over the normal modes. 
The non-dimensional result is: 
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Near field 
R = 2 4 c m  

x .': x 

Far field 
R = l ? c m  

x ![ x 7 ![ g 

(a ) I(b) (C)  

R Q ~ E  13. Pressure time series for three distinct frequencies of excitation: (a) = 0.216 rad/s; 
(b) = 0.167 rad/s; (c) = 0.124 rad/s. Other parameters which were held fixed are: i2 = 3.7 rad/ 
8 ; H  = 9cm; Q = 300cm3/s. 

in which the approximation a/q,A < 1 has been made. This is valid for comparison 
with our experiments because a / h  never exceeds 2 or 3 and the smallest value of 
qm is 16.70 for the mode number 12. The easiest check to see if the solution (13) corres- 
ponds to the experiment is to measure the free-surface elevation as a function of 
time and compare the r.m.s. pressure with the theoretical amplitude. We shall sweep 
over a range of frequencies for gentle driving. There is however an unknown adjustable 
parameter: the forcing amplitude W,. Although the mass flux is known, there are no 
direct ways of inferring the vertical velocity because the effective area of sources and 
sinks covered by a diffuser is essentially unknown. Instead the present comparison 
provides a way of estimating W, a t  a given frequency. The value so obtained was then 
used to scale the data a t  other frequencies. The pressure was measured using capaci- 
tance probes a t  two points in the tank, one in the near field (r = 24 em) and one in 
the far field (r = 12 cm). Because the pressure signal associated with quasi-non- 
divergent Rossby waves is very small we could not go as low in forcing amplitude as 
is required by the linear theory. The smallest free-surface elevation that we could 
detect with a good signal-to-noise ratio was about 50pm. This corresponded to a 
Rossby number of order 10-2 but a wave steepness still of order 0.5 for the gravest 
Rossby modes. Figure 12 shows the comparison between experimental data and the 
theoretical curves computed from (13). (The value of the spin-up time used in the 
theoretical solution was measured in situ. It varied as T = 0*75H/(vQ)1,  which is 
25% lower than the theoretical value.) Qualitative agreement exists: the lowest mode 
is slightly resonant in the near field as indicated by the peak at  w = 0.0105. Moreover 
the presence of p critical latitudes is well demonstrated as the driving frequency must 
be below a certain cut-off for any wave energy to reach the far-field probe (as shown on 
figure 12(b)). However the theoretical curves look sharper and the comparison 
deteriorates a t  low frequencies as nonlinearity creeps in. The modelling of the driving 
as a zonal sine wave and the finite steepness of the experimental waves are probably 
both important factors explaining the different widths of the spectra. At any rate both 
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FIQURE 14. The autospectra of the pressure time series shown in figure 13;  w,, is the frequencj 
of the primary wave. (a) w = 0.216 rad/s; (a) w = 0.167 rad/s; (c) OJ = 0.124 rad/s. 

the theoretical and experimental curves indicate that only the highest frequency modc 
feels the size of the container because of important Ekman damping. 

A few observations were obtained at higher amplitude levels with the Rossby 
number five times larger. They indicate an important spectral broadening of the 
empirical curves and also that more and more energy could tunnel through the critical 
latitude when the driving frequency was above the 'linear low frequency cut-off'. 

This paragraph deals with certain finite amplitude effects of the Rossby waves as 
revealed by pressure time series. Several runs with a constant large forcing amplitude 
and decreasing frequency were made. Wave forms and their spectra are shown on 
figures 13 and 14 respectively. The observation that the second and third harmonic 
occur at a fixed point on the back of the primary wave train suggests that they travel 
at the same phase velocity as the basic wave. This indicates that we are dealing with 
a genuine manifestation of nonlinear interactions of the primary wave. The disinte- 
gration of the primary wave as it travels away increases as the wave frequency de- 
creases. This is clearly what the spectra of figure 14 indicate. This is not surprising: 
the number of possible nonlinear interactions of the primary wave as it moves from 
the forced region to the far field varies like the ratio of the energy propagation time 
to the nonlinear interaction time. The former varies like the inverse of the group 
velocity and thus increases at  lower frequencies. The latter varies like wavelength 
divided by particle speed and thus decreases with frequency. Hence lowering the 
driving frequency will make the nonlinear energy transfer between Fourier components 
more complete. It is interesting to know the order of magnitude of the wave steepness 
when second harmonics have just appeared, as in figure 13(a). By measuring the 
particle velocity at  this forcing strength the steepness (equal to U'lc)  turns out to be 
about 6.0. On the other hand, as can be seen from figure 5,  we have positive indications 
that for a wave steepness as low as 0.4 measurable zonal flows could be detected. 
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Therefore the experiments suggest that nonlinearities needed to generate harmonics 
are 15 times greater than those inducing zonal flows. Because of engineering considera- 
tions the frequency spectrum of the driving is not a line spectrum but possesses some 
side-band energy around the fundamental. The experimental result is thus reminiscent 
of the stability theory of 5 4, in which it was found that a zonal flow is generated faster 
and at ‘lower amplitude levels’ than waves of longer or shorter scale generated by 
turbulent interaction between a large primary wave and its side bands. Although 
dissipation, forcing and unequal beta are all complicating influences which must be 
further evaluated, the above results suggest that the amplitude thresholds found in 
the theory are qualitatively correct. 

5.2. Connexion with potential-vorticity mixing theory 

As figure 5 shows, the present experiment demonstrates that the zonal flows spon- 
taneously appearing on a beta plane are driven by the eddies. Specifying mean flow 
accelerations as divergences of Reynolds stresses is of limited informative value. It 
does not reveal the whole of the physical nature of the rectification processes. The 
novelty of a vorticity mixing approach is that it allows one to disentangle the free 
and forced contributions to the potential-vorticity fluxes. Although what one can say 
about forced regions is at present limited, considerable intuition is available to predict 
mean flows at the ‘unforced latitudes’ of a beta plane with closed contours as shown 
by Rhines (1977). The vorticity mixing theory derived below is a slightly modified 
version of Rhines’s. On a non-divergent, beta plane with Ekman friction the vorticity 
equation can be rewritten as 

where DIDt denotes the Lagrangian derivative, R the friction coefficient and F a 
forcing function. The potential vorticity is q = E + by .  The zonally averaged complete 
z momentum equation may be manipulated to yield 

where it has been assumed that the zonal average of the function whose curl is F is 
zero. To obtain a simple expression for the meridional transport of potential vorticity 
one may construct the time integral of (14) following a fluid parcel which had potential 
vorticity qo a t  latitude yo and time t = 0. Hence at a later time t and a latitude y the 
potential vorticitv is 

(DIDt + R )  q = R/?y + F, (14) 

(all%+ R)ii = @, (15) 

Y 

q = qoe-Rt+ R/3 y(t’) exp [R(t‘ - t ) ]  dt’ + F(x(t’) ,  y(t’ ) ,  t ‘ )  exp [R(t‘ - t ) ]  dt’. 

Zonally averaging the meridional flux qu about this fixed latitude y at time t yields 

where R22(r) = v(t) v(t - 7) is the Lagrangian autocorrelation in the meridional direc- 
tion. The north-south diffusitivity of fluid parcels observed a t  latitude y and t which - 

at a prior time t‘ were a t  y’, can thus be written as 

R22(7) dr.  
I D  
2 Dt 

K,,(t - t ’ )  = - - ( y  - y’)2 = 
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In (16) the first term represents the viscous spin-down of the initial transport of 
potential vorticity by the eddies and can be expressed as 

- 
qov = C>-/%,(t). 

Substituting these terms back into (15) gives 

I I I I 
t t  I 

+ 
+ +++++ + + + 

+ + ++++ + 

* e  

e e  
Y = 23.7 cm 

qv = to cRt - PK,,(t) e-Rt - RP K2,(7) e-Rrd7 + exp [R(t’ - t ) ]  dt’. 
- -  s: 
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FIGURE 16. Experimental comparison of mean flow acceleration and potential vorticity flux at 
free latitudes in the statistically steady state. Laboratory parameter values and symbols aa in 
figure 16. 

The relation (17), valid for finite amplitude motions, is a powerful one. Consider 
exciting a fluid on a /3 plane, at  rest initially, by some remote forcing action; then at 
these distant free latitudes, ( 1  7 )  predicts that westward accelerations occur in the 
transient and steady state from the second and third terms in (17).  This is so because 
in a continuously forced fluid, the diffusivity K,,(t) is positive. Thus westward 
currents develop in free regions as a result of an irreversible mixing of the gradient 
of planetary vorticity. Because no net momentum may appear in the fluid, eastward 
currents must also be found in the forced regions. This implies that the last term in 
(17) has to be positive there. However a t  present the precise way in which this can 
occur remains unclear. 
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The experiments described earlier fit neatly into this description. More quantitative 
comparisons can be provided. The first makes use of figure 5 which shows that, in the 
steady state, the zonally averaged westward current scales with neither v’ nor 211, 
but somewhere in between. The third term in (16), a weighted integral of the diffusi- 
vity, indicates just that. 

The second comparison involves more detailed measurements: it was decided to 
check directly from the observations if the magnitude of the westward mean flow 
finally equilibrates to 

/3 Kg2(7)e-RTdT, Rt B 1, 

at free latitudes as it should in the statistically steady state on the basis of (17). 
A number of Lagrangian particle paths were extracted from cin6-films and digitized. 
Fixes of the trajectories were taken roughly every fifth of a wave period. Typically 
around 700 fixes were spread over a spin up time scale. As shown by the above expres- 
sion the steady state value of the.potentia1 vorticity flux necessitates only a knowledge 
of the zonally averaged meridional diffusivity K,, and of the spin-up time. At any 
given time and latitude, a large number of fluid parcels just crossing the line is needed 
for constructing meaningful zonal averages of Lagrangian statistics. This was a hard 
requirement to satisfy. To increase the number of degrees of freedom, the zonal 
average was applied to a narrow latitude band rather than to a line as in (17). Having 
the set of trajectories a t  hand, K,, was numerically evaluated in the following way: 
for a given band and time, particles lying within the band were identified. This set of 
particles was followed backwards in time and Lagrangian velocity correlation were 
computed by averaging over the set, usually made of between 5 and 15 particles. 

The number of degrees of freedom is not very large in spite of the large amount of 
data input. This explains certainly most of the noisy behaviour of the estimates. The 
diffusivity was obtained by integrating the correlation in time. Note that such a 
computation actually estimates the backward diffusivity used in the theory. Bearing 
in mind these limitations, the results of such free latitude computations are shown on 
figures 15 and 16. They depict the value of the frictional force and of the statistically 
steady @. Thus in the long run these two quantities should equilibrate. Figure 15 
represents such a calculation for the transient stages, immediately after switch-on. 
One may note that the high degree of scatter in the potential vorticity fluxes prevents 
documentation statistically of such an equilibration. However on the whole, the 
negative sign of the fluxes seems to occur, indicating that a down gradient mixing of 
potential vorticity is occurring. Such computations carried out when the flow has 
reached a statistically steady state are shown on figure 16. The scatter is less because 
stationarity could be used to increase the degrees of freedom. On the right side of the 
graph the time-averaged values and standard deviation of all data points have been 
plotted. These results are suggestive of a gross agreement (only) with the voriticity 
mixing theory and no pretension has been put forward that this case is statistically 
significant. Although the wave steepnesses are order one, the turbulence is not very 
diffusive and particles do not wander very far in latitude. Thus the long-term meri- 
dional dispersion is bounded, which implies that the long-term diffusivity vanishes. 
Clearly the p effect introduces a strong meridional restoring force. 

Somewhat aside from the preceding discussion, an a priori puzzling fact can be 
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observed in figure 6. Indeed it is realized that cyclonic eddies at  forcing latitudes are 
so much enhanced compared with anticyclonic ones that the latter almost disappea1. 
NOW the retrograde sense of the interior mean flow is evidently just what is needed 
to intensify cyclones and weaken anticyclones at  the forcing latitudes. The beta effect, 
therefore, introduces an asymmetry in the eddy pattern; the anticyclones grow 
preferentially to a larger scale (to form the interior westward mean flow) while cyclones 
stay at smaller scales tied up to the directly driven southern region. Thus one may 
say that in this context the spectral characteristics of the eddies depend upon the 
sign of pressure anomalies. A control run was carried out by performing the same 
experiment but replacing the upper paraboloidal surface by a rigid flat lid. In  the 
transient stage on this f plane, initially small eddies exhibited the usual tendency to 
grow to larger scales ‘irrespective of their signs’ as in classical two-dimensional tur- 
bulence and no organized mean flow could be detected. One must not infer from the 
8-plane runs, however, that a meridional vorticity partition is associated with the 
distribution of the eddies. Contrasting this with geostrophic turbulence over bumpy 
topography, one may show that the ‘area-averaged’ correlation (where 5 is the 
relative vorticity) vanishes after taking into account the axial symmetry of the 
forcing. 

5.3. The spin-down period 

The observations were presented briefly in 3 3. ‘Total area’ averaging of mean and 
eddy velocity fields indicated a tendency for eddy kinetic energy (respectively mean 
kinetic energy) to spin down at  a faster rate (respectively slower) rate than the Ekman 
dissipation time scale. These results shown in figure 7, therefore indicates that the 
mean flow is stable to finite amplitude smaller scale perturbations. One could argue, 
however, that the strong damping of the waves whose energy peaks in the forced 
region might be due to uneven bottom roughness in this region compared with the 
interior as shown by figure 1. Controlled experiments reveal that the spin-up time 
scale decreased by about 30 yo when the smooth bottom has been covered by a rougher 
sheet of foam rubber. This reduction is not sufficient to account for the observations, 
which show that the initial decrease of eddy kinetic energy occurs on the inertial time 
scale, which is really an order of magnitude smaller than the viscous time scale. The 
role played by lateral friction seems to be equally minor: for scales as small as 1 cm 
(Le. a tenth of the eddy energy containing scale) the associated lateral decay time of 
the order of 100 s is far too long to matter. 

Recalling the existence of two integral invariants of the motions, these energy re- 
distributions are not surprising; indeed on an unblocked beta-plane, total kinetic 
energy and relative enstrophy are conserved. It is then possible to show that nonlinear 
interactions in freely decaying turbulence lead to an expansion of the energy-con- 
taining scale. The energy migration observed here from the short waves to the larger- 
scale mean flow is after all just following that rule. 

Hydrodynamic stability theory can only with extreme difficulty produce such 
general results and it is customary to make case studies of selected, usually inviscid 
mean flows. Whether classical stability studies are as useful as initial-value problems 
to explore the physical mechanisms of wave/mean-flow interaction problems remains 
to be seen. One may, however, recall some of the conclusions of the former in the 
present context. For inviscid flow self-excited and damped perturbations, being 
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FIGURE 17. Experimental values of potential vorticity as a function of radial distance 
for a run as in figure 6(a)  (plate 2). 0 ,  planetary vorticity; 0, absolute vorticity. 

complex conjugates, coexist. This clearly restricts the usefulness of the theory to the 
self-excited case. In connexion with the shear waves embedded in the atmospheric 
westerlies, Kuo (1949) showed that a necessary condition for a zonal flow to be un- 
stable on a 8-plane is that the gradient of mean potential vorticity vanishes some- 
where. If this is so, one may adapt Lin’s (1955) result to show that unstable solutions 
exist in the neighbourhood of the neutral curve. In the event that the function 
k ( y )  = ( U  - c)-l d Q / d y  remains positive ( U  being the zonal flow, c the phase speed of 
the perturbations and Q the mean potential vorticity), one deduces that instability 
will occur for waves with scales longer than neutral. This argument applies well to a 
broad class of westward flows but went almost unnoticed because k(y) never keeps 
the same sign for westerlies. This is about as far as one can go within the framework 
of inviscid theory. The relevance to the above experimental observations is weak. 
Indeed Kuo’s criterion has been plotted on figure 17 for the large amplitude run 
corresponding to figure 6 (a).  Extrema of mean potential vorticity are found near tho 
maximum of the westward jet and, as we recall, the waves are damped. Furthermore 
smaller amplitude runs producing weaker zonal flows do not yield extrema in the 
meridional distribution of potential vorticity. In  these cases also, however, the damp- 
ing of the perturbations occurred on the inertial time scale whereas the application of 
inviscid theory would predict no energy exchange between waves and the mean flow. 
Thus KUO’S criterion has probably little to do with the existence of exclusively 
damped solutions. Clearly the theory must accommodate other effects such as time de- 
pendence or viscosity. 
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6. Conclusion 
We have shown both experimentally and theoretically that finite amplitude 

Rossby waves are fully capable of exciting mean flows along geostrophic contours 
when the latter are not blocked by obstacles or meridional boundaries. The occur- 
rence of westward jets away from forced regions seems to be reasonably explained 
by a down-gradient mixing of potential vorticity. However more work needs to be 
done to elucidate the behaviour of flow-forcing velocity correlation. 

The direct relevance to atmospheric planetary motions might be important because 
the geostrophic contours are ‘unblocked ’ in both geometries. Although the thermal 
forcing induces directly a strong mean circulation which might obscure genuine 
rectification processes, the above results should prompt one to look for long-term 
sources and sinks of mesoscale energy. These must be correlated with anomalies of 
the directly driven zonal circulation schemes. I n  the meantime, to make accurate 
predictions of the sign of the anomalies (for instance the mid-latitude surface wester- 
lies), the influence of density stratification upon the rectified circulation schemes 
presented here must be evaluated. 

Further model studies are needed to explore the connexions with the oceanic cir- 
culation. In  particular the influence of meridional boundaries must be carefully 
assessed along the lines initially explored by Pedlosky (1965). At this time the present 
work suggests caution when neglecting the effect of these eddy-vorticity fluxes in 
model or diagnostic studies of the general circulation. This is clearly supported by the 
abundant evidence of the overwhelming eddy activity in the world oceans and also 
by recent observations (Worthington 1977 ; Schmitz 1977) which indicate smaller-scale 
mean gyres in the western North Atlantic than were previously expected on the basis 
of exclusively wind-driven circulation models. 

Throughout the course of this work the author benefited greatly from numerous 
discussions with Dr P. B. Rhines. The original design of the experiment was put for- 
ward by Dr A. McEwan and his help is gratefully acknowledged here. Part of this 
paper originates from a doctoral thesis submitted by the author at the Massachusetts 
Institute of Technology and the Woods Hole Oceanographic Institution. Support was 
provided by the National Science Foundation under grant OCE 75-21674. The author 
is also very much indebted to Mrs M. Beuzart for typing the manuscript and to  M. J. 
Kervella for plotting the figures. This is Woods Hole Oceanographic Institution 
contribution no. 4282. 
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Note added in proof (26 February 1979) 

The different domains of application may be further substantiated. As pointed out 
earlier by Rhines (1975) a resonant interaction mechanism may favour ‘nearly zonal’ 
flows. A referee has pointed out that this result can be recovered easily within the 
present formulation. If one considers a triad composed of a primary wave, its sideband 
and a long wave, the latter must satisfy the dispersion relation. This implies that Q, 
in ( 6 )  must go to 0. As a consequence, the threshold requirement drops out, i.e. the 
long wave may be generated at  arbitrarily small wave steepness. It remains to see what 
is the preferred orientation of this wave. The possible wavenumbers are to be found on 
the resonance curve whose equation is given by: R, = 0. That is 

2kl 8k = - kZ + 12 

This is the asymptotic version near the origin of Longuet-Higgins and Gill’s full 
resonance curve. This shows that nearly zonal flows ( N ~ / ( 8 1 ) ~  = O(1)) are in fact 
produced by resonant interaction. The growth rates are identical with those derived 
earlier for the non-resonant case when 8 is much larger than pa. 

The conjunction of both resonant and non-resonant mechanism therefore indicates 
that if a Rossby wave of small or large steepness is modulated, it will always be 
accompanied by quasi-steady zonal or nearly zonal waves. 
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FIGURE 3. (a)  The Rossby wave transients induced by switching on the westward-travelling ring 
forcing a t  the outer boundary. (61 The statistically steady state. Laboratory parameter values 
are: R = 3,06rad/s, w = 0.4rad/s, H = 7 em, Q = 363cm3/s. Non-dimensional parameters 
become: U / f L  = 2 . 5 ~  l O F ,  E = 6 . 8 ~  
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Fr = 0.13 and U / c  = 3.3. 

(Fucing p .  64) 
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FIGURE 6. (a )  The statistically steady state. (b)  The period of decay 20 s after switching off of 
the driving. Laboratory parameter values are: !2 = 3.83 rad/s, w = 0-4 rad/s, H = I0 em, 
Q = 363 c1n3/s. 

COLTIL’ DE VERIlIfiRE 



Journal of Fluid Mechanics, Vol. 94, part 1 

FIGURE 11. A long-exposure photograph revealing the fluid-particle paths in a 
weak Rossby wave field. The time exposure is equal to the wave period. 
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